NP-complete and NP-hard problems

 Transitivity of polynomial-time many-one
reductions

« Concept of Completeness and hardness for
a complexity class

 Definition of complexity class NP
— NP-complete and NP-hard problems

I, <, [, & I, <, T T, <, T,

* Let R, be the reduction used to prove IT; <,
HZ

* Let R, be the reduction used to prove IT, <,
HS

 Letx be an input to I,

 Define R;(x) to be R,(R,(X))

Answer-preserving argument

« Because R, Is a reduction between IT; and IT,,
we know that R,(x) Is a yes input instance of I1,
Iff X IS a yes Input instance of I1,

« Because R, Is a reduction between I, and I,
we know that R,(R,(X)) Is a yes input instance of
[T, Iff Ry(X) Is a yes input instance of I1,

« Applying transitivity of iff, we get that R;(x) is a
yes input of I'l; Iff X Is a yes Input instance of I,

Polynomial-time Argument

_et R, take time n¢!

_et R, take time n¢?

_et n be the size of x

Then the R, call of R, takes time at most n¢!
Furthermore, R,(X) has size at most max(n,n¢t)

Therefore, the R, call of R, takes time at most
max(nCZ’ (nCl)CZ) = maX (nCZ’ nCl CZ)

In either case, the total time taken by R, Is
polynomial in n

NP-complete and NP-hard problems

 Transitivity of polynomial-time many-one
reductions

» Concept of Completeness and hardness for
a complexity class

 Definition of complexity class NP
— NP-complete and NP-hard problems

Utility of Relative Classification
Results

Consider only a pair of problems IT; and IT,

What does I1; <, I, mean?
— IfII isnotin P, then I1, isnotin P
— Intuitively, I, is at least as hard as I,
What does I1; <, IT, and IT, <, IT; mean?
— Ifeither I1, or I, is not in P, then the other isnot in P
— Intuitively, these two problems are equivalent in difficulty

In isolation, these results have relatively little impact
unless you care about these two specific problems

Utility of Relative Classification
Results cont’d

Consider only a set of problems C

What does “for all IT" & C IT” <, TT mean?
— Ifany problemin Cisnotin P, then IT is not in P.
— IfITisin P, then all problems in C are in P.
— Intuitively, IT is the hardest problem in C union {IT}

What does “for all ILIT" ¢ C IT" <, IT mean?
— Ifany one of the problems in C is not in P, then they all are not
in P.
— Ifany one of the problems in C is in P, then they all are in P.

— Intuitively, the problems in C are roughly equivalent in
complexity.

The importance of these results depends on the class C

Definition of C-hard and C-complete

« Let C be aset of problems

e (C-hard definition

— Aproblem ITis C-hard if for all IT" ¢ C IT” <, IT
holds.

— Intuitively, IT is the hardest problem in C union {I1}
 C-complete
— A problem IT is C-complete if
— ITis C-hard and
— TITisinC
— Thatis, ITis in C and is the “hardest” problem in C
(with respect to being in P)

Observations

« All C-complete problems are equivalent in
difficulty with respect to being in P

* Proving a new problem IT is C-hard

— If there is a known C-hard problem IT’ (usually a C-
complete problem), then we can prove I is C-hard by
showing that IT" <, IT

This follows from transitivity of poly-time reductions

— If there is no known C-hard problem IT’, we require
some method for proving that all problems in C
polynomial-time many-one reduce to I1

NP-complete and NP-hard problems

 Transitivity of polynomial-time many-one
reductions

« Concept of Completeness and hardness for
a complexity class

 Definition of complexity class NP
— NP-complete and NP-hard problems

Motivation for Complexity Class NP

« Itincludes many interesting problems
« It seems unlikely that P = NP

« We can show many interesting problems
have the property of being NP-complete

Definition of NP-hard and NP-complete

A problemITis NP-hard if
— forall ITT" ¢ NP IT" <, TT holds.

A problem ITis NP-complete if
— ITis NP-hard and
— ITisiIn NP
* Proving a problem IT is NP-complete

— Show IT is in NP (usually easy step)
— Prove forall TT" ¢ NP IT" <, TT holds.

Table method, simulation based method: Cook’s Thm
Show that 77" <; 77for some NP-hard problem 77°

Importance of NP-completeness
Importance of “Is P=NP” Question

 Practitioners view

— There exist a large number of interesting and
seemingly different problems which have been
proven to be NP-complete

— The P=NP gquestion represents the question of
whether or not all of these interesting and different
problems belong to P

— As the set of NP-complete problems grows, the
question becomes more and more interesting

Importance of NP-completeness
Importance of “Is P=NP” Question

Theoretician’s view

— We will show that NP is exactly the set of problems which can
be “verified” in polynomial time

— Thus “Is P=NP?” can be rephrased as follows:

e Is it true that any problem that can be “verified” in polynomial time
can also be “solved” in polynomial time?

Hardness Implications

— It seems unlikely that all problems that can be verified in
polynomial time also can be solved in polynomial time

— Ifso, then P is not equal to NP

— Thus, proving a problem to be NP-complete is a hardness result
as such a problem will not be in P if P is not equal to NP.

Traditional definition of NP

Turing machine model of computation
— Simple model where data is on an infinite capacity tape
— Only operations are reading char stored in current tape cell,
writing a char to current tape cell, moving tape head left or right
one square
Deterministic versus nondeterministic computation
— Deterministic: At any point in time, next move is determined
— Nondeterministic: At any point in time, several next moves are
possible
NP: Class of problems that can be solved by a
nondeterminstic turing machine in polynomial time

Turing Machines

A Turing machine has a finite-state-control (its program),
a two way infinite tape (its memory) and a read-write
head (its program counter)

Finite State
Control
Head

T1]0]1]0l0]02]2]0[2]1]---
Tape

Nondeterministic Running Time

Deterministic Computation Nondeterministic Computation

We measure running time by looking at height of computation tree,
NOT number of nodes explored

« Both computation have same height 4 and thus same running time

ND computation returning yes

A 1A

Yes Result No Result

If any leaf node returns yes, we consider the input to be a yes input.
 If all leaf nodes return no, then we consider the input to be a no input.

Showing a problem is in NP

Hamiltonian Path

— Input: Undirected graph G = (V,E)

— Y/N Question: Does G contain a HP?
Nondeterministic polynomial-time solution

— Guess a hamiltonian path P (ordering of vertices)
V! possible orderings
For binary tree, V log V height to generate all guesses

— Verify guessed ordering is correct
— Return yes/no if ordering is actually a HP

[Hlustration

2
'/I Guess Phase
3

1 Nondeterministic
Yesinputgraph /L L 4 L LN

128 132 213 281 312 3p1 Verify Phase
Deterministic

2
I Guess Phase

1° 3 Nondeterministic
Noinputgraph L L 4 L LN

128 132 213 231 312 321 Verify Phase
Deterministic

Alternate definition of NP

Preliminary Definitions
Let IT be a decision problem
Let | be an input instance of I1
Let Y(IT) be the set of yes input instances of I1
Let N(I'T) be the set of no input instances of I1
IT belongs to NP iff

« Forany |l ¢ Y(IT), there exists a “certificate” [solution] C(I)
such that a deterministic algorithm can verify | € Y(I1) in
polynomial time with the help of C(1)

« Forany I € N(IT), no “certificate” [solution] C(I) will
convince the algorithm that I € Y(IT).

Connection

Guess Phase

1 Nondeterministic

Yesinputgraph </ L / L L\ e

Verify Phase
Deterministic

312 321

Guess Phase
Nondeterministic
Verify Phase
Deterministic

No input graph

128 132 213 281 312 321

«Certificate [Solution]
A Hamiltonian Path
«C(l,): 123 or 321
*C(l,): none
\erification Alg:

*Check for edge
between all adjacent
nodes in path

Example: Cligue Problem

« Cligue Problem
— Input: Undirected graph G = (V,E), integer k
— Y/N Question: Does G contain a clique of
size > K?
« Certificate
— Aclique C of size at least k
« Verification algorithm
— Verify that all nodes in C are connected in E

Proving a problem is in NP

* You need to describe what the certificate C(l)
will be for any input instance |
* You need to describe the verification algorithm
— usually trivial
* You need to argue that all yes input instances

and only yes input instances have an appropriate
certificate C(l)

— also usually trivial (typically do not require)

Example: Vertex Cover Problem

« Vertex Cover Problem
— Input: Undirected graph G = (V,E), integer k

— Y/N Question: Does G contain a vertex cover of size
< k?

Vertex cover: A set of vertices C such that for every edge
(u,v) in E, eitheruisin Cor visin C (or both are in C)

e Certificate
— A vertex cover C of size at most k

« Verification algorithm
— Verify that all edges in E contain a node in C

Example: Satisfiability Problem

« Satisfiability Problem

— Input: Set of variables X and set of clauses C
over X

— Y/N Question: Is there a satisfying truth
assignment T for the variables in X such that
all clauses in C are true?

« Certificate?
« Verification algorithm?

Example: Unsatisfiability Problem

« Unsatisfiability Problem

— Input: Set of variables X and set of clauses C
over X

— Y/N Question: Is there no satisfying truth
assignment T for the variables in X such that
all clauses in C are true?

« Certificate?
« Verification algorithm?

Key recap

* Proving a problem IT is NP-complete

— Show IT is In NP (usually easy step)

— Proveforall IT" e NP IT < I'T holds.

Assuming we have an NP-hard problem IT°
Show that 77" <; 77for some NP-hard problem 77

e For this to work, we need a “first” NP-
hard problem I1

— Cook’s Theorem and SAT

