
NP-complete and NP-hard problems 

• Transitivity of polynomial-time many-one 

reductions 

• Concept of Completeness and hardness for 

a complexity class 

• Definition of complexity class NP 

– NP-complete and NP-hard problems 



P1 ≤p P2 & P2 ≤p P3 P1 ≤p P3 

• Let R1 be the reduction used to prove P1 ≤p 

P2  

• Let R2 be the reduction used to prove P2 ≤p 

P3 

• Let x be an input to P1 

• Define R3(x) to be R2(R1(x)) 

 



Answer-preserving argument 

• Because R1 is a reduction between P1 and P2, 

we know that R1(x) is a yes input instance of P2 

iff x is a yes input instance of P1 

• Because R2 is a reduction between P2 and P3, 

we know that R2(R1(x)) is a yes input instance of 

P3 iff R1(x) is a yes input instance of P2 

• Applying transitivity of iff, we get that R3(x) is a 

yes input of P3 iff x is a yes input instance of P1 



Polynomial-time Argument 

• Let R1 take time nc1 

• Let R2 take time nc2 

• Let n be the size of x 

• Then the R1 call of R3 takes time at most nc1 

• Furthermore, R1(x) has size at most max(n,nc1) 

• Therefore, the R2 call of R3 takes time at most 
max(nc2, (nc1)c2) = max (nc2, nc1 c2) 

• In either case, the total time taken by R3 is 
polynomial in n 
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Utility of Relative Classification 

Results 

• Consider only a pair of problems P1 and P2 

• What does P1 ≤p P2 mean? 

– If P1 is not in P, then P2 is not in P 

– Intuitively, P2 is at least as hard as P1 

• What does P1 ≤p P2 and P2 ≤p P1 mean? 

– If either P1 or P2 is not in P, then the other is not in P 

– Intuitively, these two problems are equivalent in difficulty 

• In isolation, these results have relatively little impact 
unless you care about these two specific problems 



Utility of Relative Classification 

Results cont’d 
• Consider only a set of problems C 

• What does “for all P’ e C P’ ≤p P mean? 
– If any problem in C is not in P, then P is not in P. 

– If P is in P, then all problems in C are in P. 

– Intuitively, P is the hardest problem in C union {P} 

• What does “for all P,P’ e C P’ ≤p P mean? 
– If any one of the problems in C is not in P, then they all are not 

in P. 

– If any one of the problems in C is in P, then they all are in P. 

– Intuitively, the problems in C are roughly equivalent in 
complexity. 

• The importance of these results depends on the class C 



Definition of C-hard and C-complete 

• Let C be a set of problems 

• C-hard definition 
– A problem P is C-hard if for all P’ e C P’ ≤p P 

holds. 

– Intuitively, P is the hardest problem in C union {P} 

• C-complete 
– A problem P is C-complete if 

–  P is C-hard and 

–  P is in C  

– That is, P is in C and is the “hardest” problem in C 
(with respect to being in P)  



Observations 

• All C-complete problems are equivalent in 
difficulty with respect to being in P 

• Proving a new problem P is C-hard 

– If there is a known C-hard problem P’ (usually a C-
complete problem), then we can prove P is C-hard by 
showing that P’ ≤p P 

• This follows from transitivity of poly-time reductions 

– If there is no known C-hard problem P’, we require 
some method for proving that all problems in C 
polynomial-time many-one reduce to P 
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Motivation for Complexity Class NP 

• It includes many interesting problems 

• It seems unlikely that P = NP 

• We can show many interesting problems 

have the property of being NP-complete 



Definition of NP-hard and NP-complete 

• A problem P is NP-hard if  

– for all P’ e NP P’ ≤p P holds. 

• A problem P is NP-complete if 

–  P is NP-hard and 

–  P is in NP 

• Proving a problem P is NP-complete 

– Show P is in NP (usually easy step) 

– Prove for all P’ e NP P’ ≤p P holds. 
• Table method, simulation based method: Cook’s Thm 

• Show that P’ ≤p P for some NP-hard problem P’ 



Importance of NP-completeness 

Importance of “Is P=NP” Question 

• Practitioners view 

– There exist a large number of interesting and 

seemingly different problems which have been 

proven to be NP-complete 

– The P=NP question represents the question of 

whether or not all of these interesting and different 

problems belong to P 

– As the set of NP-complete problems grows, the 

question becomes more and more interesting 



Importance of NP-completeness 

Importance of “Is P=NP” Question 

• Theoretician’s view 

– We will show that NP is exactly the set of problems which can 
be “verified” in polynomial time 

– Thus “Is P=NP?” can be rephrased as follows: 

• Is it true that any problem that can be “verified” in polynomial time 
can also be “solved” in polynomial time? 

• Hardness Implications 

– It seems unlikely that all problems that can be verified in 
polynomial time also can be solved in polynomial time 

– If so, then P is not equal to NP 

– Thus, proving a problem to be NP-complete is a hardness result 
as such a problem will not be in P if P is not equal to NP. 



Traditional definition of NP 

• Turing machine model of computation 

– Simple model where data is on an infinite capacity tape 

– Only operations are reading char stored in current tape cell, 
writing a char to current tape cell, moving tape head left or right 
one square 

• Deterministic versus nondeterministic computation 

– Deterministic: At any point in time, next move is determined 

– Nondeterministic: At any point in time, several next moves are 
possible 

• NP: Class of problems that can be solved by a 
nondeterminstic turing machine in polynomial time 



Turing Machines 

A Turing machine has a finite-state-control (its program), 

a two way infinite tape (its memory) and a read-write 

head (its program counter)  

0 1 1 1 1 0 0 1 0 0 1 

Head 

Tape 

…. …. 

Finite State 

Control 



Nondeterministic Running Time 

• We measure running time by looking at height of computation tree, 
NOT number of nodes explored 

• Both computation have same height 4 and thus same running time 

Deterministic Computation Nondeterministic Computation 



ND computation returning yes 

• If any leaf node returns yes, we consider the input to be a yes input. 

• If all leaf nodes return no, then we consider the input to be a no input. 

Yes Result No Result 



Showing a problem is in NP 

• Hamiltonian Path 

– Input: Undirected graph G = (V,E) 

– Y/N Question: Does G contain a HP? 

• Nondeterministic polynomial-time solution 

– Guess a hamiltonian path P (ordering of vertices) 

• V! possible orderings 

• For binary tree, V log V height to generate all guesses 

– Verify guessed ordering is correct 

– Return yes/no if ordering is actually a HP  



Illustration 

1 

2 

3 

Yes input graph 
123 132 213 231 312 321 

Guess Phase 

Nondeterministic 

--------------- 

Verify Phase 

Deterministic 

1 

2 

3 

No input graph 
123 132 213 231 312 321 

Guess Phase 

Nondeterministic 

--------------- 

Verify Phase 

Deterministic 



Alternate definition of NP 

• Preliminary Definitions 

– Let P be a decision problem 

– Let I be an input instance of P 

– Let Y(P) be the set of yes input instances of P 

– Let N(P) be the set of no input instances of P 

•  P belongs to NP iff 
• For any I e Y(P), there exists a “certificate” [solution] C(I) 

such that a deterministic algorithm can verify I e Y(P) in 
polynomial time with the help of C(I) 

• For any I e N(P), no “certificate” [solution] C(I) will 
convince the algorithm that I e Y(P). 



Connection 

1 

2 

3 

Yes input graph 

123 132 213 231 312 321 

Guess Phase 

Nondeterministic 

--------------- 

Verify Phase 

Deterministic 

1 

2 

3 

No input graph 
123 132 213 231 312 321 

Guess Phase 

Nondeterministic 

--------------- 

Verify Phase 

Deterministic 

•Certificate [Solution] 

•A Hamiltonian Path 

•C(I1): 123 or 321 

•C(I2): none 

•Verification Alg: 

•Check for edge 

between all adjacent 

nodes in path 



Example: Clique Problem 

• Clique Problem 

– Input: Undirected graph G = (V,E), integer k 

– Y/N Question: Does G contain a clique of 

size ≥ k? 

• Certificate 

– A clique C of size at least k 

• Verification algorithm 

– Verify that all nodes in C are connected in E  



Proving a problem is in NP 

• You need to describe what the certificate C(I) 

will be for any input instance I 

• You need to describe the verification algorithm  

– usually trivial 

• You need to argue that all yes input instances 

and only yes input instances have an appropriate 

certificate C(I)  

– also usually trivial (typically do not require) 



Example: Vertex Cover Problem 

• Vertex Cover Problem 

– Input: Undirected graph G = (V,E), integer k 

– Y/N Question: Does G contain a vertex cover of size 

≤ k? 

• Vertex cover: A set of vertices C such that for every edge 
(u,v) in E, either u is in C or v is in C (or both are in C) 

• Certificate 

– A vertex cover C of size at most k 

• Verification algorithm 

– Verify that all edges in E contain a node in C  



Example: Satisfiability Problem 

• Satisfiability Problem 

– Input: Set of variables X and set of clauses C 

over X 

– Y/N Question: Is there a satisfying truth 

assignment T for the variables in X such that 

all clauses in C are true? 

• Certificate? 

• Verification algorithm? 



Example: Unsatisfiability Problem 

• Unsatisfiability Problem 

– Input: Set of variables X and set of clauses C 

over X 

– Y/N Question: Is there no satisfying truth 

assignment T for the variables in X such that 

all clauses in C are true? 

• Certificate? 

• Verification algorithm? 



Key recap 

• Proving a problem P is NP-complete 

– Show P is in NP (usually easy step) 

– Prove for all P’ e NP P’ ≤p P holds. 

• Assuming we have an NP-hard problem P’ 

• Show that P’ ≤p P for some NP-hard problem P’ 

• For this to work, we need a “first” NP-

hard problem P 

– Cook’s Theorem and SAT 


