
NP-complete and NP-hard problems

• Transitivity of polynomial-time many-one

reductions

• Concept of Completeness and hardness for

a complexity class

• Definition of complexity class NP

– NP-complete and NP-hard problems

P1 ≤p P2 & P2 ≤p P3 P1 ≤p P3

• Let R1 be the reduction used to prove P1 ≤p

P2

• Let R2 be the reduction used to prove P2 ≤p

P3

• Let x be an input to P1

• Define R3(x) to be R2(R1(x))

Answer-preserving argument

• Because R1 is a reduction between P1 and P2,

we know that R1(x) is a yes input instance of P2

iff x is a yes input instance of P1

• Because R2 is a reduction between P2 and P3,

we know that R2(R1(x)) is a yes input instance of

P3 iff R1(x) is a yes input instance of P2

• Applying transitivity of iff, we get that R3(x) is a

yes input of P3 iff x is a yes input instance of P1

Polynomial-time Argument

• Let R1 take time nc1

• Let R2 take time nc2

• Let n be the size of x

• Then the R1 call of R3 takes time at most nc1

• Furthermore, R1(x) has size at most max(n,nc1)

• Therefore, the R2 call of R3 takes time at most
max(nc2, (nc1)c2) = max (nc2, nc1 c2)

• In either case, the total time taken by R3 is
polynomial in n

NP-complete and NP-hard problems

• Transitivity of polynomial-time many-one

reductions

• Concept of Completeness and hardness for

a complexity class

• Definition of complexity class NP

– NP-complete and NP-hard problems

Utility of Relative Classification

Results

• Consider only a pair of problems P1 and P2

• What does P1 ≤p P2 mean?

– If P1 is not in P, then P2 is not in P

– Intuitively, P2 is at least as hard as P1

• What does P1 ≤p P2 and P2 ≤p P1 mean?

– If either P1 or P2 is not in P, then the other is not in P

– Intuitively, these two problems are equivalent in difficulty

• In isolation, these results have relatively little impact
unless you care about these two specific problems

Utility of Relative Classification

Results cont’d
• Consider only a set of problems C

• What does “for all P’ e C P’ ≤p P mean?
– If any problem in C is not in P, then P is not in P.

– If P is in P, then all problems in C are in P.

– Intuitively, P is the hardest problem in C union {P}

• What does “for all P,P’ e C P’ ≤p P mean?
– If any one of the problems in C is not in P, then they all are not

in P.

– If any one of the problems in C is in P, then they all are in P.

– Intuitively, the problems in C are roughly equivalent in
complexity.

• The importance of these results depends on the class C

Definition of C-hard and C-complete

• Let C be a set of problems

• C-hard definition
– A problem P is C-hard if for all P’ e C P’ ≤p P

holds.

– Intuitively, P is the hardest problem in C union {P}

• C-complete
– A problem P is C-complete if

– P is C-hard and

– P is in C

– That is, P is in C and is the “hardest” problem in C
(with respect to being in P)

Observations

• All C-complete problems are equivalent in
difficulty with respect to being in P

• Proving a new problem P is C-hard

– If there is a known C-hard problem P’ (usually a C-
complete problem), then we can prove P is C-hard by
showing that P’ ≤p P

• This follows from transitivity of poly-time reductions

– If there is no known C-hard problem P’, we require
some method for proving that all problems in C
polynomial-time many-one reduce to P

NP-complete and NP-hard problems

• Transitivity of polynomial-time many-one

reductions

• Concept of Completeness and hardness for

a complexity class

• Definition of complexity class NP

– NP-complete and NP-hard problems

Motivation for Complexity Class NP

• It includes many interesting problems

• It seems unlikely that P = NP

• We can show many interesting problems

have the property of being NP-complete

Definition of NP-hard and NP-complete

• A problem P is NP-hard if

– for all P’ e NP P’ ≤p P holds.

• A problem P is NP-complete if

– P is NP-hard and

– P is in NP

• Proving a problem P is NP-complete

– Show P is in NP (usually easy step)

– Prove for all P’ e NP P’ ≤p P holds.
• Table method, simulation based method: Cook’s Thm

• Show that P’ ≤p P for some NP-hard problem P’

Importance of NP-completeness

Importance of “Is P=NP” Question

• Practitioners view

– There exist a large number of interesting and

seemingly different problems which have been

proven to be NP-complete

– The P=NP question represents the question of

whether or not all of these interesting and different

problems belong to P

– As the set of NP-complete problems grows, the

question becomes more and more interesting

Importance of NP-completeness

Importance of “Is P=NP” Question

• Theoretician’s view

– We will show that NP is exactly the set of problems which can
be “verified” in polynomial time

– Thus “Is P=NP?” can be rephrased as follows:

• Is it true that any problem that can be “verified” in polynomial time
can also be “solved” in polynomial time?

• Hardness Implications

– It seems unlikely that all problems that can be verified in
polynomial time also can be solved in polynomial time

– If so, then P is not equal to NP

– Thus, proving a problem to be NP-complete is a hardness result
as such a problem will not be in P if P is not equal to NP.

Traditional definition of NP

• Turing machine model of computation

– Simple model where data is on an infinite capacity tape

– Only operations are reading char stored in current tape cell,
writing a char to current tape cell, moving tape head left or right
one square

• Deterministic versus nondeterministic computation

– Deterministic: At any point in time, next move is determined

– Nondeterministic: At any point in time, several next moves are
possible

• NP: Class of problems that can be solved by a
nondeterminstic turing machine in polynomial time

Turing Machines

A Turing machine has a finite-state-control (its program),

a two way infinite tape (its memory) and a read-write

head (its program counter)

0 1 1 1 1 0 0 1 0 0 1

Head

Tape

…. ….

Finite State

Control

Nondeterministic Running Time

• We measure running time by looking at height of computation tree,
NOT number of nodes explored

• Both computation have same height 4 and thus same running time

Deterministic Computation Nondeterministic Computation

ND computation returning yes

• If any leaf node returns yes, we consider the input to be a yes input.

• If all leaf nodes return no, then we consider the input to be a no input.

Yes Result No Result

Showing a problem is in NP

• Hamiltonian Path

– Input: Undirected graph G = (V,E)

– Y/N Question: Does G contain a HP?

• Nondeterministic polynomial-time solution

– Guess a hamiltonian path P (ordering of vertices)

• V! possible orderings

• For binary tree, V log V height to generate all guesses

– Verify guessed ordering is correct

– Return yes/no if ordering is actually a HP

Illustration

1

2

3

Yes input graph
123 132 213 231 312 321

Guess Phase

Nondeterministic

Verify Phase

Deterministic

1

2

3

No input graph
123 132 213 231 312 321

Guess Phase

Nondeterministic

Verify Phase

Deterministic

Alternate definition of NP

• Preliminary Definitions

– Let P be a decision problem

– Let I be an input instance of P

– Let Y(P) be the set of yes input instances of P

– Let N(P) be the set of no input instances of P

• P belongs to NP iff
• For any I e Y(P), there exists a “certificate” [solution] C(I)

such that a deterministic algorithm can verify I e Y(P) in
polynomial time with the help of C(I)

• For any I e N(P), no “certificate” [solution] C(I) will
convince the algorithm that I e Y(P).

Connection

1

2

3

Yes input graph

123 132 213 231 312 321

Guess Phase

Nondeterministic

Verify Phase

Deterministic

1

2

3

No input graph
123 132 213 231 312 321

Guess Phase

Nondeterministic

Verify Phase

Deterministic

•Certificate [Solution]

•A Hamiltonian Path

•C(I1): 123 or 321

•C(I2): none

•Verification Alg:

•Check for edge

between all adjacent

nodes in path

Example: Clique Problem

• Clique Problem

– Input: Undirected graph G = (V,E), integer k

– Y/N Question: Does G contain a clique of

size ≥ k?

• Certificate

– A clique C of size at least k

• Verification algorithm

– Verify that all nodes in C are connected in E

Proving a problem is in NP

• You need to describe what the certificate C(I)

will be for any input instance I

• You need to describe the verification algorithm

– usually trivial

• You need to argue that all yes input instances

and only yes input instances have an appropriate

certificate C(I)

– also usually trivial (typically do not require)

Example: Vertex Cover Problem

• Vertex Cover Problem

– Input: Undirected graph G = (V,E), integer k

– Y/N Question: Does G contain a vertex cover of size

≤ k?

• Vertex cover: A set of vertices C such that for every edge
(u,v) in E, either u is in C or v is in C (or both are in C)

• Certificate

– A vertex cover C of size at most k

• Verification algorithm

– Verify that all edges in E contain a node in C

Example: Satisfiability Problem

• Satisfiability Problem

– Input: Set of variables X and set of clauses C

over X

– Y/N Question: Is there a satisfying truth

assignment T for the variables in X such that

all clauses in C are true?

• Certificate?

• Verification algorithm?

Example: Unsatisfiability Problem

• Unsatisfiability Problem

– Input: Set of variables X and set of clauses C

over X

– Y/N Question: Is there no satisfying truth

assignment T for the variables in X such that

all clauses in C are true?

• Certificate?

• Verification algorithm?

Key recap

• Proving a problem P is NP-complete

– Show P is in NP (usually easy step)

– Prove for all P’ e NP P’ ≤p P holds.

• Assuming we have an NP-hard problem P’

• Show that P’ ≤p P for some NP-hard problem P’

• For this to work, we need a “first” NP-

hard problem P

– Cook’s Theorem and SAT

