NP-complete and NP-hard problems

- Transitivity of polynomial-time many-one reductions
- Concept of Completeness and hardness for a complexity class
- Definition of complexity class NP
- NP-complete and NP-hard problems

$\Pi_{1} \leq_{\mathrm{p}} \Pi_{2} \& \Pi_{2} \leq_{\mathrm{p}} \Pi_{3} \rightarrow \Pi_{1} \leq_{\mathrm{p}} \Pi_{3}$

- Let R_{1} be the reduction used to prove $\Pi_{1} \leq_{\mathrm{p}}$ Π_{2}
- Let R_{2} be the reduction used to prove $\Pi_{2} \leq_{\mathrm{p}}$ Π_{3}
- Let x be an input to Π_{1}
- Define $\mathrm{R}_{3}(\mathrm{x})$ to be $\mathrm{R}_{2}\left(\mathrm{R}_{1}(\mathrm{x})\right)$

Answer-preserving argument

- Because R_{1} is a reduction between Π_{1} and Π_{2}, we know that $R_{1}(x)$ is a yes input instance of Π_{2} iff x is a yes input instance of Π_{1}
- Because R_{2} is a reduction between Π_{2} and Π_{3}, we know that $R_{2}\left(R_{1}(x)\right)$ is a yes input instance of Π_{3} iff $R_{1}(x)$ is a yes input instance of Π_{2}
- Applying transitivity of iff, we get that $\mathrm{R}_{3}(\mathrm{x})$ is a yes input of Π_{3} iff x is a yes input instance of Π_{1}

Polynomial-time Argument

- Let R_{1} take time $\mathrm{n}^{\mathrm{c} 1}$
- Let R_{2} take time $n^{c 2}$
- Let n be the size of x
- Then the R_{1} call of R_{3} takes time at most $\mathrm{n}^{\mathrm{c} 1}$
- Furthermore, $\mathrm{R}_{1}(\mathrm{x})$ has size at most $\max \left(\mathrm{n}, \mathrm{n}^{\mathrm{c} 1}\right)$
- Therefore, the R_{2} call of R_{3} takes time at most $\max \left(\mathrm{n}^{\mathrm{c} 2},\left(\mathrm{n}^{\mathrm{c} 1}\right)^{\mathrm{c} 2}\right)=\max \left(\mathrm{n}^{\mathrm{c} 2}, \mathrm{n}^{\mathrm{c} 1 \mathrm{c} 2}\right)$
- In either case, the total time taken by R_{3} is polynomial in n

NP-complete and NP-hard problems

- Transitivity of polynomial-time many-one reductions
- Concept of Completeness and hardness for a complexity class
- Definition of complexity class NP
- NP-complete and NP-hard problems

Utility of Relative Classification Results

- Consider only a pair of problems Π_{1} and Π_{2}
- What does $\Pi_{1} \leq_{p} \Pi_{2}$ mean?
- If Π_{1} is not in P , then Π_{2} is not in P
- Intuitively, Π_{2} is at least as hard as Π_{1}
- What does $\Pi_{1} \leq_{\mathrm{p}} \Pi_{2}$ and $\Pi_{2} \leq_{\mathrm{p}} \Pi_{1}$ mean?
- If either Π_{1} or Π_{2} is not in P, then the other is not in P
- Intuitively, these two problems are equivalent in difficulty
- In isolation, these results have relatively little impact unless you care about these two specific problems

Utility of Relative Classification Results cont'd

- Consider only a set of problems C
- What does 'for all Π ' $\varepsilon C \Pi$ ' $\leq_{p} \Pi$ mean?
- If any problem in C is not in P, then Π is not in P.
- If Π is in P, then all problems in C are in P.
- Intuitively, Π is the hardest problem in C union $\{\Pi\}$
- What does "for all $\Pi, \Pi ’ \varepsilon C ~ \Pi ’ \leq{ }_{\mathrm{p}} \Pi$ mean?
- If any one of the problems in C is not in P , then they all are not in P .
- If any one of the problems in C is in P , then they all are in P .
- Intuitively, the problems in C are roughly equivalent in complexity.
- The importance of these results depends on the class C

Definition of C-hard and C-complete

- Let C be a set of problems
- C-hard definition
- A problem Π is C-hard if for all $\Pi^{\prime} \varepsilon$ C $\Pi^{\prime} \leq_{\mathrm{p}} \Pi$ holds.
- Intuitively, Π is the hardest problem in C union $\{\Pi\}$
- C-complete
- A problem Π is C -complete if
- $\quad \Pi$ is C -hard and
- $\quad \Pi$ is in C
- That is, Π is in C and is the "hardest" problem in C (with respect to being in P)

Observations

- All C-complete problems are equivalent in difficulty with respect to being in P
- Proving a new problem Π is C -hard
- If there is a known C-hard problem П' (usually a Ccomplete problem), then we can prove Π is C -hard by showing that $\Pi^{\prime} \leq_{p} \Pi$
- This follows from transitivity of poly-time reductions
- If there is no known C-hard problem П', we require some method for proving that all problems in C polynomial-time many-one reduce to Π

NP-complete and NP-hard problems

- Transitivity of polynomial-time many-one reductions
- Concept of Completeness and hardness for a complexity class
- Definition of complexity class NP
- NP-complete and NP-hard problems

Motivation for Complexity Class NP

- It includes many interesting problems
- It seems unlikely that $\mathrm{P}=\mathrm{NP}$
- We can show many interesting problems have the property of being NP-complete

Definition of NP-hard and NP-complete

- A problem Π is NP-hard if
- for all $\Pi^{\prime} \varepsilon$ NP $\Pi^{\prime} \leq_{p} \Pi$ holds.
- A problem Π is NP-complete if
- $\quad \Pi$ is NP-hard and
- $\quad \Pi$ is in NP
- Proving a problem Π is NP-complete
- Show Π is in NP (usually easy step)
- Prove for all П' ε NP Π ' $\leq_{p} \Pi$ holds.
- Table method, simulation based method: Cook's Thm
- Show that Π ' $\leq_{p} \Pi$ for some $N P$-hard problem Π '

Importance of NP-completeness Importance of "Is P=NP" Question

- Practitioners view
- There exist a large number of interesting and seemingly different problems which have been proven to be NP-complete
- The $P=N P$ question represents the question of whether or not all of these interesting and different problems belong to P
- As the set of NP-complete problems grows, the question becomes more and more interesting

Importance of NP-completeness Importance of "Is P=NP" Question

- Theoretician's view
- We will show that NP is exactly the set of problems which can be "verified" in polynomial time
- Thus "Is $\mathrm{P}=\mathrm{NP}$?" can be rephrased as follows:
- Is it true that any problem that can be "verified" in polynomial time can also be "solved" in polynomial time?
- Hardness Implications
- It seems unlikely that all problems that can be verified in polynomial time also can be solved in polynomial time
- If so, then P is not equal to NP
- Thus, proving a problem to be NP-complete is a hardness result as such a problem will not be in P if P is not equal to NP.

Traditional definition of NP

- Turing machine model of computation
- Simple model where data is on an infinite capacity tape
- Only operations are reading char stored in current tape cell, writing a char to current tape cell, moving tape head left or right one square
- Deterministic versus nondeterministic computation
- Deterministic: At any point in time, next move is determined
- Nondeterministic: At any point in time, several next moves are possible
- NP: Class of problems that can be solved by a nondeterminstic turing machine in polynomial time

Turing Machines

A Turing machine has a finite-state-control (its program), a two way infinite tape (its memory) and a read-write head (its program counter)

Nondeterministic Running Time

Deterministic Computation
Nondeterministic Computation

- We measure running time by looking at height of computation tree, NOT number of nodes explored
- Both computation have same height 4 and thus same running time

ND computation returning yes

Yes Result

No Result

- If any leaf node returns yes, we consider the input to be a yes input.
- If all leaf nodes return no, then we consider the input to be a no input.

Showing a problem is in NP

- Hamiltonian Path
- Input: Undirected graph $G=(\mathrm{V}, \mathrm{E})$
- Y/N Question: Does G contain a HP?
- Nondeterministic polynomial-time solution
- Guess a hamiltonian path P (ordering of vertices)
- V! possible orderings
- For binary tree, $\mathrm{V} \log \mathrm{V}$ height to generate all guesses
- Verify guessed ordering is correct
- Return yes/no if ordering is actually a HP

Illustration

Yes input graph

Guess Phase
Nondeterministic

Verify Phase
Deterministic

No input graph

Guess Phase
Nondeterministic
Verify Phase Deterministic

Alternate definition of NP

- Preliminary Definitions
- Let Π be a decision problem
- Let I be an input instance of Π
- Let $\mathrm{Y}(\Pi)$ be the set of yes input instances of Π
- Let $N(\Pi)$ be the set of no input instances of Π Π belongs to NP iff
- For any I $\varepsilon \mathrm{Y}(\Pi)$, there exists a "certificate" [solution] C(I) such that a deterministic algorithm can verify $\mathrm{I} \varepsilon \mathrm{Y}(\Pi)$ in polynomial time with the help of C(I)
- For any $\mathrm{I} \varepsilon \mathrm{N}(\Pi)$, no "certificate" [solution] $\mathrm{C}(\mathrm{I})$ will convince the algorithm that $\mathrm{I} \varepsilon \mathrm{Y}(\Pi)$.

Connection

Example: Clique Problem

- Clique Problem
- Input: Undirected graph $G=(\mathrm{V}, \mathrm{E})$, integer k
- Y/N Question: Does G contain a clique of size $\geq \mathrm{k}$?
- Certificate
- A clique C of size at least k
- Verification algorithm
- Verify that all nodes in C are connected in E

Proving a problem is in NP

- You need to describe what the certificate C(I) will be for any input instance I
- You need to describe the verification algorithm
- usually trivial
- You need to argue that all yes input instances and only yes input instances have an appropriate certificate C(I)
- also usually trivial (typically do not require)

Example: Vertex Cover Problem

- Vertex Cover Problem
- Input: Undirected graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$, integer k
- Y/N Question: Does G contain a vertex cover of size $\leq \mathrm{k}$?
- Vertex cover: A set of vertices C such that for every edge (u, v) in E, either u is in C or v is in C (or both are in C)
- Certificate
- A vertex cover C of size at most k
- Verification algorithm
- Verify that all edges in E contain a node in C

Example: Satisfiability Problem

- Satisfiability Problem
- Input: Set of variables X and set of clauses C over X
- Y/N Question: Is there a satisfying truth assignment T for the variables in X such that all clauses in C are true?
- Certificate?
- Verification algorithm?

Example: Unsatisfiability Problem

- Unsatisfiability Problem
- Input: Set of variables X and set of clauses C over X
- Y/N Question: Is there no satisfying truth assignment T for the variables in X such that all clauses in C are true?
- Certificate?
- Verification algorithm?

Key recap

- Proving a problem Π is NP-complete
- Show Π is in NP (usually easy step)
- Prove for all $\Pi^{\prime} \varepsilon$ NP $\Pi^{\prime} \leq_{p} \Pi$ holds.
- Assuming we have an NP-hard problem П'
- Show that $\Pi ’ \leq_{p}$ Пfor some NP-hard problem П’
- For this to work, we need a "first" NPhard problem Π
- Cook's Theorem and SAT

